rinkeli_möbiuksen nauha

Möbiuksen nauha on topologinen kappale, jolla on ainoastaan yksi pinta ja yksi reuna. (Lähde: Wikipedia. Mikäli pidät rinkeleistä ja matemaattisista pähkinöistä niin tässä hauska vinkki, kuinka voit soveltaa möbiuksen nauhan ”kaavaa” tavallisen rinkelin (tai amerikkalaisittain bagelin) halkaisemisessa. Mikäli toimit tarkasti ohjeiden mukaan, niin tuloksena saat kaksi toisiinsa kiinnittynyttä, möbiuksen nauhaa muistuttavaa rinkelinkappaletta.

bagel möbiuksen nauha

Tarkat ohjeet viipalointiin löytyvät osoitteesta georgehart.com

Mainos: Edulliset värikasetit + kaupan päälle mahtavat edut uusille asiakkaille. Lue lisää ja tilaa heti.

Edellinen artikkeliMaailman pienin lumiukko on 0,01mm korkea ja ei ole tehty lumesta
Seuraava artikkeliOmenasorvi on melko varmasti hienoin omenankuorimalaite ikinä!

12 KOMMENTIT

  1. Möbiuksen nauhan lisäksi toinen aivoja ravisuttava esine on kleinin pullo jossa ei ole sisäpuolta, ulkopuolta tai reunaa, tosin se on mahdoton valmistaa koska ”pullo” kiertyy itsensä sisään koskettamatta itseään.

  2. Reppu: Tuo on sinänsä hämäävä kapine että sitä kuvaa ei periaatteessa pitäisi olla wikipediassa, todellisuudessa Kleinin pullo ei saisi koskettaa itseään kohdassa jossa pullonkaula kääntyy pullon sisään keskivaiheilla, kuitenkin kääntyen pullon sisään, se tekee siitä juuri mahdottoman, kyseessä on 4 ulotteinen esine, niin sitä ei voi valmistaa kolmiulotteisena.

    Melko hämmentävää.

  3. Klein bottle wikipediassa englanniksi paremmat kuvat http://en.wikipedia.org/wiki/Klein_bottle

    Ongelma on kyllä yhä että kun kyseessä on 4d objekti sitä on mahdoton piirtää tai kuvata kaksi tai kolmiulotteisena oikein.

    Kolme ulottuvuuttahan olivat korkeus, syvyys ja leveys (kaksi ulotteisella esineellä olisi korkeus ja leveys, mutta sivusta katsoessa se olisi näkymätön koska sillä ei ole syvyyttä, ei edes nanometriä) . Neliulotteisessa esineessä olisi vielä neljäs mitta, jota ei kolmiulotteisesti pystytä havainnollistamaan.

    Koska elämme kolmeulottuvaisessa maailmassa, mikään esine ei voi siksi kulkea itsensä läpi kuitenkaan tekemättä sitä, tai muuta yhtälailla käsittämätöntä, mikä aiheuttaisi ikävän päänsäryn suurimmalle osalle ihmisistä. Ihminen ei kykenisi täysin edes näkemään mitään neliulotteista, siis jos jotain sellaista olisi olemassa.

  4. Klein-pinnan on tarkoitus olla kaksiulotteinen rakenne useampiulotteisessa avaruudessa (samalla tavoin kuin Möbius-pinta).

    Jokainen, joka on koskaan kyhännyt noita, voi kertoa, että niiden konstruktio on täysin mahdollista – ainoa tilanne, jossa tuo neljäs tilaulottuvuus ”tarvitaan” Klein-pinnan suhteen, on se, kun halutaan välttää pinnan leikkaus itsensä kanssa. Tämähän ei kuitenkaan ole ajatusleikin pointti.

    Kuten artikkelissa mainitaan, Möbius-pinnan erikoisuus on siinä, että sillä on vain yksi pinta (sama pinta kolmiulotteisen kierteen ansiosta kummallakin ”puolella”) ja yksi reuna; vastaavasti Klein-pinnan erikoisuus on siinä, että sillä on myös vain yksi pinta, mutta ei reunaa ollenkaan (3D-konstruktioissa tämä reunattomuus menetetään, koska luonnollisesti ”reuna” syntyy siihen kohtaan, jossa pinta menee ”itsensä läpi”).

  5. olenko ensimmäinen joka huomaa että kyseessä ei ole möbiuksen nauha?

    Jos kyseessä olisi oikea möbiuksen (rinkeli) nauha, olisi rinkelissä vain yksi pinta eikä tuota kuori puolta ollenkaan.

  6. moi: olet tavallaan oikeassa… tuosta rinkelistä ei minkäänlaista möbiuspintaa saa, mutta tämä tieto on ”kätkeytynyt käännösvaiheessa”. Mikäli luet tuon alkuperäisen artikkelin, niin havaitset tuon rinkelin olevan vain apuväline – möbiuspinta siis muodostuu siitä leikkauksesta, ei siitä rinkelistä 🙂

  7. ”möbiuspinta siis muodostuu siitä leikkauksesta, ei siitä rinkelistä”

    Jos ymmärsin oikein mitä yrität sanoa: Tuossa kuvassa ei ole kyllä mitään sellaista pintaa, leikkausta, donitsia tai mitään muutakaan asiaa, jonka voisi edes mielikuvitusta venyttämällä kuvitella esittävän möbiuksen nauhaa. Erillinen voipuoli ja pohja riittää osoittamaan tämän, sillä jos rinkeli esittäisi onnistuneesti möbiuksen nauhaa ei siinä olisi kahta puolta joista valita, kummalle voin tapaisen aineen levittää.

Comments are closed.